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Abstract. For a hopping model on a square lattice with a fraction c of sites randomly 
replaced by impurities, the static conductivity and  diffusion coefficients can be expanded 
in powers of the concentration c. Here we calculate the exact coefficients of O ( c )  a n d  
O( cz )  using analytical a n d  numerical methods,  and  the results are  compared with computer 
simulations. 

1. Introduction 

In a previous paper (Nieuwenhuizen et a1 1987, hereafter referred to as I), we have 
developed a systematic kinetic theory approach for calculating transport properties in 
diffusive systems with static disorder, partly based on the method of Lifshitz (1964). 
The theory was applied to a random walk ( R W )  with nearest-neighbour ( N N )  hops on 
a square lattice, with a fraction c of sites, chosen at random, replaced by impurities. 
The impurity at site n determines the jump rate u into the site n. Depending on their 
properties impurities may decrease (CJ < 1) or increase ( U >  1 )  the average transport 
properties. For u=O the impurity sites are blocked and one has the standard site 
percolation model. 

The model is very different from the random jump rate model, where the impurity 
at site n determines the jump rate out of the size n. For the latter model the diffusion 
coefficient D( c )  is known exactly for arbitrary dimensionality (Haus and  Kehr 1987). 
The percolation transition, however, always occurs at c = 1, as in the one-dimensional 
case. 

For our R W  model with site disorder, expressions were derived for the response 
function and the transport coefficients, exact to O( c’)  in the impurity concentration. 
In this paper the expressions will be evaluated, partly analytically, partly numerically, 
to obtain the diffusion coefficient and conductivity for the R W  model on the site- 
disordered lattice described above. 

We briefly describe the model and  recall the necessary results and definitions of I .  
The system under consideration is a square lattice with unit lattice distance, N sites 
and with periodic boundary conditions. To every site n = { n,, n y }  a random variable 
4, = 1 - bc, is assigned, where 4, = 1 - b CJ (where C T ~  0) with probability c for an 
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impurity site (c, = 1) and where 4, = 1 with probability (1 - c)  for a host lattice site 
(c, = 0). If a=O (or b = 1) the impurity sites are inaccessible or excluded to the RW, 
corresponding to the standard site percolation model. We use the formulation of a 
continuous time dynamics, where the probability distribution p n (  t )  for the RW is 
described by the master equation 

P n  = a  c (4npn+P - $ ,+ ,p , ) .  
P 

The relation of this model to the ordinary discrete-time random walk was given in 
I .  The site percolation model ( u = O )  can also be considered as a lattice Lorentz gas 
(Keyes and Lyklema 1982, Nieuwenhuizen et a1 1986, Frenkel 1986). 

The transport properties of interest in this paper are the diffusion coefficient D ( c ) ,  
defined through the long-time behaviour of the mean square displacement (n:) = 2 0 (  c ) t  
( t  +a), and the static conductivity Z( c )  = ( 4 ) D (  c), where ( 4 )  = 1 - bc is the effective 
free-volume fraction or 'porosity' of the system. 

In I we obtained an expression for the frequency-dependent conductivity Z ( z ,  c) 
and for the Laplace transform of the velocity autocorrelation function (VACF) a( z, c ) ,  
exact to O( c') in the concentration of impurities. Their limit as z + 0 reduces to the 
static conductivity C(c) = Z(0, c)  and diffusion coefficient D ( c )  = @(O, c). The 
expressions are 

Z ( z ,  c)=($)@(z, C ) = ~ - c t , ( z ) + C Z [ K 3 , ( Z ) + Q , ( Z ) ] + O ( C 3 ) .  (1.2) 

Here t , ,  K , ,  and Q3 are elements of 5 x 5 matrices and of a 5-vector Q, labelled 
i , j  = [0, 1 ,2 ,3 ,4] ,  defined as 

where p I  ={1,0} is a N N  site of the origin, and the column 5-vector a ( p l )  has the 
elements (0, -a, i, f ,  0). The lattice Green function g ( n ,  z )  is a real 5 x 5 matrix, the 
elements of which are linear combinations (with m equal to n or one of its N N  or N N N  

sites) of standard lattice Green functions G,( z ) ,  denoting the probability for a displace- 
ment m on a uniform lattice. They have the explicit form 

g(n, z )  = S [ z + w ( q ) I - '  exp(-iqn)h(q)e(q)S I, 
where the integration sign denotes an average over the first Brillouin zone of the square 
lattice with q x ,  qr E [--T, T ]  and weight (47~*)- ' .  The basis vectors are defined as 

( 1 . 4 ~ )  

with 

e1(9) = W (  4 )  = 1 - f COS ql- - f COS q,, 

ez( q )  = f cos qx - f cos 9, 
(1.4b) 

e J q )  =sin qx e,( q )  = sin 9,. 

The transformation matrix S is diagonal with elements { 1, 1, 1, i, i} with i = a. This 
matrix S makes all matrix elements of g(  n, z )  real. The matrix elements of the diagonal 
matrix t ( z )  account for the sum of all possible RW on a uniform lattice that return to 
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their point of origin. In kinetic theory language these contributions are called ‘repeated 
ring collisions’. Their explicit form is 

t ( z )=d iag{ l ,  t , ,  t 2 ,  f3, f41 (1.5a) 

with 

(1.5b) 

To obtain explicit values for diffusion coefficient and conductivity one has to 
calculate lattice Green functions for all sites, invert the matrices [ t - ’  +g( n)] and carry 
out the lattice summation in (1.2). In  $0 2 and 3 we compute the O(c) and O(c2) 
contributions respectively to the diffusion coefficient. Section 4 contains a discussion 
of the results and a comparison with computer simulations. Analytic results for the 
Green functions are developed in appendix 1 and for a special lattice sum in appendix 
2. 

2. Transport coefficients to O(c)  

In  this section we concentrate on the contribution linear in the impurity concentration 
c that was obtained by summing the so-called ‘repeated ring collisions’ of the RW with 
a single impurity. 

The expression to be analysed follows from (1.2) and (1.5) as 

Z(Z)  = : f - i  cb / [ l -  b I ( z ) ]  (2.1) 

where Z(z) is the ring collision integral 

For the square lattice and  in the static limit ( z + O )  this integral can be calculated by 
introducing new integration variables cy = ;( q x  + q, ) and p = f (  qr - q, ) and by using 
the symmetry of the integrand to reduce the resulting integration region to one quarter. 
The result is 

I ( 0 )  =- (1/ 77’) j: 1; d a  d/3 cos’ a ( 1 -  cos2 p ) / (  1 -cos a cos p )  

= 1 -2/T. (2.3) 

The DC conductivity and diffusion coefficient are then given by 

Z ( C ) = ( ~  - b c ) D ( c ) = a - i c b / ( l -  b1(0) )+O(c2) .  (2.4) 

Here D ( 0 )  = 4 is the diffusion coefficient of the impurity free lattice with I ( 0 )  = 1 - 2/ T. 

For the percolation case (blocked sites, non-conducting impurities) the parameter 
b = 1 and the jump rate into the impurity site is (T = 1 - b = 0. Then the static conduc- 
tivity simplifies to Z(c) = (1 - T C ) / ~  as already derived by Izyumov (1966) and Harris 
and  Kirkpatrick (1977) in the context of random ferromagnets. 
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3. Transport coefficients to O(c2) 

3.1. Reduction to 3 x 3 matrices 

The O ( c 2 )  contribution involves the more difficult problem of the interactions of a R W  

with two impurities, and requires the evaluation of the lattice sum (1.2) in the limit 
z += 0. The static transport coefficients have the following expansion in powers of the 
impurity conceritration c :  

I ; I : c ) = : ( l + p , c + p z c 2 + .  . .) 
D ( c )  = :(l+ a,c+ a2c2+. . .)* 

(3.1) 

Since ($) = 1 - bc the expansion coefficients are related as PI = a ,  - b and  p2 = a2 - ba ,  
with 

The results for the O ( c )  coefficients a ,  and P I  have already been given through (2.4). 
This section is devoted to the calculation of a2 and P 2 .  We start with the lattice sum 
in (1.3). The reflection symmetries described in appendix 2 of I guarantee that kll  
( { n x ,  n , } ,  z )  only depends on the absolute values ln,l and In, 1, and equals k,, ( {  n,  , n , } ,  z ) .  
Symmetrisatiori in n,  and n ,  of the summand in (1.3) yields 

and the square symmetry allows us to restrict the summation to one eighth of the {nr,  
n , , }  plane ( n ,  3 n ,  3 0). 

In order to study the 5 x 5 matrix K ( z )  and the 5-vector Q ( z )  in (1.3) we need to 
introduce some notation: 

(3.4) 

= r( n, z )  - t (  z )  + t (  z ) r (  n, z ) .  (3.6) 
The 5-vector Q( z )  in (1.3) can be written as 

q ( Z )  = (w,, z)r (p l ,  ON,,. 

U,(PI)b = &,(PI, O)b = r/ l (Pl ,  0). 

(3.7) 
Here we have made use of (A1.7) and the equality t , ( O )  = b (see (Al . lO)) ,  which implies 

(3.8) 
Consider first the inversion of the 5 x 5 matrix r+( n,  z )  with labels i ,  j E {0 ,  1, 2, 3,4}, 
where t ( z )  is a diagonal matrix, defined in ( 1 . 9 ,  and g(n, z )  is defined in (1.4). The 
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( O j )  elements of g ( n ,  z )  are vanishing on account of (1.4a). Hence go,( n, z )  = ro,( n, z )  = 
0, which implies that r , (  n, z )  = 0 for j E { 1 ,2 ,3 ,4} .  Next we note that r( n, z )  in (3.6) 
is multiplied on the right by r ( n ,  z ) ,  the zeroth row of which is vanishing also. 
Consequently, the zeroth column r, , (n,  z )  never contributes to any of the matrix 
elements of k (  n, z )  in (3.5). We can always restrict ourselves to the (1234) subspace 
and only work with 4 x 4 matrices with labels i, j E { 1,2 ,  3,4}.  

A further reduction to 3 x 3 matrices can be achieved by setting z = 0 in (3.4). 
Consider the first column of r - ’ ( n ,  z ) .  Then it follows from ( l S ) ,  (Al.lO), (3.4) and 
(A1.7) that 

(r-’(n,o)),l = 6, , t ; ’ (o)+g, , (n ,  0) 

= 6,,b-’+a,(p)6,,.  (3.9) 

In this expression p stands for one of the N N  lattice vectors p, with i = 1 , 2 , 3 , 4 .  Thus 
if n Z p, we have T, , (n ,  0) = b6,, and the matrix elements T,,(n, 0) with i , j  E {2 ,3 ,4}  
and n f p d o  not depend on the quantities in (3.7). Consequently, Tc,(n,  0) and 
(r(n, O)r (n ,  0)),, for n # p with i , j  E {2 ,3 ,4}  can be calculated from the 3 x 3 matrices 
g( n, 0) and r( n, O),  restricted to the (234) subspace; for sites n # 0 and n # p we can 
always work with 3 x 3 matrices with labels i, j E {2,3,4}.  

3.2. Evaluation of matrix elements 

In the remaining part of 9 3 we drop the argument, z = 0, e.g. r(n) = r ( n ,  0), r = r (O) ,  
etc. 

We first consider contributions from nearest-neighbour sites ( n  = p ) ,  which require 
a separate discussion, because r ( p )  cannot be reduced to the (234) subspace. Nearest- 
neighbour terms appear in Q3 of (3.7) and in k 3 ) ( p )  and kd4(p) of (3.4). On account 
of (3.5) the Q term reduces to 

Q 3 =  Q3(0)=-r31(P1). (3.10) 

In the further discussion of r(p) and r ( p )  = g(p)r from N N  sites we can restrict our 
considerations to the site p l  = { 1,O) because of square symmetry. The inverse matrix 
r - ’ ( p l ) =  r-’+g(p,) is given through ( 1 . 5 )  and (A1.lO) and is 

Evaluation of T ( p , )  requires at most inversion of a 3 x 3 matrix-involving determinant 
and minors of (3 .11 ) .  We only list the explicit results as far as they are needed in 
subsequent calculations: 

(3.12) 

where p ( p l )  is the determinant of the 3 x 3  matrix in the upper left corner of (3 .11 ) .  
Next we consider r(n, 0) for more distant sites, where we can restrict ourselves to 

the (234) subspace. The evaluation requires the lattice Green functions g ( n ,  0). For 
the neighbour sites { n x ,  ny} with (n ,I+ln , , /  s 4  we have listed the values of the matrix 
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elements in table 3. Combination of these expressions with r(0) in (1.5) yields the 
3 x 3 matrix r- '( n, 0). For more distant sites the analytic calculation of g( n, 0) readily 
becomes too cumbersome and the integrals g,,( n, 0) are evaluated numerically, as 
described in appendix Al.2. The required matrix inversions and multiplications for 
all sites n are performed numerically. 

3.3. Analysis of the lattice sums 

In evaluating the lattice sum K ( 0 )  in (3.4) it is not permitted to interchange the limit 
z + 0 with the lattice summation. The reason is that the most dominant matrix elements 
of r(n,O) behave as ~ ~ i j ( n , 0 ) ~ - O ( ~ n ~ - 2 )  for In1 >> 1 with ln12= n : + n : ,  as discussed in 
(A1.16). Consequently the 2~ lattice sum C ( k (  n, 0)l diverges logarithmically. Further- 
more C Ik( n, z)l cannot be evaluated analytically and in its present form is not suitable 
for numerical evaluation. However, we can increase the rate of convergence of the 
lattice sum by subtracting the slowly converging part, which can be evaluated analyti- 
cally. This can be done by inserting the third equality of (3.5) into the lattice sum: 

K ( z ) =  c [r(z)r(n,  z ) -h (n , z ) l  
n f O  

(3.13) 

The n summation of the second term can be performed numerically because the 
summand decreases as lnl-4 for large In[.  The summation of the  first term was performed 
analytically using the relations 

c r ( n ,  z)  =s, c [ z + w ( q ) l - '  exP(-isn);(q)e(q)S,t(z) 

(3.14) 

In the last equality we carried out the lattice summation with the help of 
Z n f o  exp(-iqn) = Ntjq0- 1 . . . and used relations (3.4) and (1.4). Then the limit z + O  
can be taken under the summation sign and we find for the relevant (33) element: 

(3.15) 

The large-n behaviour of the summand in (3.15) can be obtained from the relation 
r(n)- t as / n l > >  1 and (A1.16) and reduces to 

f l r o  n f O  5 
= -r(O, z). 

K77(0) = - f ? r d o ) -  C ( r ( n ) r 2 ( n ) ) 7 3 .  
n # O  

( t r2(n) )73  = (4/7~*)t: lnj-~ (In1 >> 1). 
Therefore the 2D lattice sum in (3.15) converges only slowly. The rate of convergence 
can be increased considerably by performing the sum C r2( n )  analytically, as has been 
done in equation (A2.5). If r(n) in (3.15) is written as r(n) = r - r ( n ) r ( n )  (see (3.5)), 
then (3.4) and (A1.9) give r7 , (0)  = ( 4 / ~  - 2)t, and the lattice sum becomes 

7 

K 3 4 0 ) =  t :(2-4/~)+1: c p,+ ( U n ) r 3 ( n ) ) , ,  (3.16) 
, = I  , I f 0  

with coefficients U, following from (A2.5): 

(3.17) 

Next we consider the large-In1 behaviour of the summand, which follows from (A1.16) 
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and (3.4) as 

( ~ ( n ) r ~ ( n ) ) ~ ~  = (8/ .rr3)t:(n: - n ; , ) I n I - * + ~ ( I n l - ~ ) .  

Since this expression changes sign upon interchanging n ,  and n,, its leading O(\nl -6)  
contribution to the lattice sum (3.16) vanishes, and the summand decreases at least as 
fast as /nl-’ for In(  >> 1. Thus, the lattice sum in (3.16) is rapidly converging and will 
be used for numerical calculations. 

Let K:Y’(O) denote the value of K33(0)  in (3.16), obtained by performing the lattice 
sum over the diamond-shaped region Inx/ + Inv/ N ,  containing approximately N 2 / 2  
sites, Then one can use the formula 

K33(0)  = K : Y ’ ( 0 ) + r o N - 5  (3.18) 

as an  extrapolation formula for large N. The constant ro appearing in the remainder 
can be estimated by considering K i Y ’ ( 0 )  for different values of N, where for small N 
the estimate for ro will depend on N. We have used this method in our calculation, 
and illustrated it in table 1 for the percolation case ( b  = 1). The more accurate 
calculations, reported in I for the percolation case, allow us to estimate the relative 
error in this procedure to be 1:10-4. In table 2 we have summarised the values of 

Table 1. Lattice sum in (3.17) for I n , l + / n , l G  N and its extrapolation on (3.18) for b =  1. 

1 -0.000 37 -0.000 37 
2 -0.220 03 -0.227 11 
3 -0.224 14 -0.224 76 
4 -0.224 66 - 0.224 83 

Table2. O(c’) coefficients for different impurity j u m p  rates v =  1 - b. 

1.000 -0.2248 0.5463 1.2858 -0.8558 
0.900 -0.0532 0.4087 1.4223 -0.1750 
0.800 0.0202 0.2980 1.2730 0.1084 
0.700 0.0453 0.2105 1.023 1 0.1988 
0.600 0.0470 0.1427 0.7591 0.1983 
0.500 0.0387 0.0915 0.5207 0.1597 
0.400 0.027 1 0.0541 0.3248 0.1104 
0.300 0.0160 0.0282 0.1766 0.0645 
0.200 0.0073 0.01 16 0.0754 0.0292 
0.100 0.0018 0.0027 0.0181 0.0073 

-0.1 11 1 1  0.0022 0.0028 0.0202 0.0089 
-0.250 0.0109 0.0131 0.0960 0.0439 
-0.428 57 0.0307 0.0341 0.2593 0.1251 
-0.666 67 0.0695 0.0709 0.5617 0.2906 
- 1.000 0.1415 0.1306 1.0888 0.6218 
- 1.500 0.2731 0.2240 1.9884 0 . 1 3 2 6 ~  10 
-2.333 33 0.5167 0.3662 3.5314 0.3083 x 10 
-4.000 0.9863 0.5781 6.2573 0.9215 x I O  
-9.000 1.9615 0.8854 1.139x I O  0.5445 x I O 2  

4.2894 1.3093 2 . 2 4 0 ~  10 -1 x 10”’ 
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K 3 3 ( 0 )  and Q3(0) together with the density expansion coefficient pz and a2 (see (3.2)) 
for the static conductivity and the diffusion coefficient respectively. 

4. Discussions and comparison with computer simulations 

In the previous sections we have calculated the coefficients aI and p, of the O( c’) term 
( I  = 1,2) in the density expansion of the diffusion coefficient and the static conductivity 
respectively. The results for aI and P I  are given through (3.2) and those for a2 and 
Pz are listed in table 2 for several values of b, where a = 1 - b is the hopping rate into 
an impurity site. Positive (negative) b values correspond to site impurities that are 
poorer (better) conductors with a < 1 ( a >  1) than the conducting sites of the original 
host lattice without impurities (c  = 0). 

The low-density coefficient in the c expansion can also be used for high densities 
because of a symmetry property relating c and 1 - c. It is based on the mapping (Ernst 
er af 1987) { c ,  a } e { c ’ =  1 -c,  a’= l/a} implying b’= b / ( b -  1) and gives the relation 

D(c, (+)=(+D(l -c ,  I / u ) .  (4.1) 

With the help of this result we have plotted in figure 1 the [ 1,4], [3,2] and [4, 13 Pad6 
approximants to D( c, a) /D(O,  a) = 4D(c, a) for values of a = 1 - b in the interval 0.1 
(0.1) 1.0. We did not include the [2,3] Pad6 approximant, because for a s 0 . 3  it has 
poles for 0 < c < 1 .  For the percolation case a = 0 we have presented the quadratic 

1 0  

0 8  

0 6  

?- 
0 4  

Q 

0 2  

0 0 . 2  0 4  0.6 0.8 1 0  

C 

Figure 1. Diffusion coefficient D ( c ) / D ( O )  = 4 D ( c )  against impurity concentration c for 
several values of the impurity conductance U = 1 - b with 0s US 1 on a Z D  square lattice 
with site disorder (A, u=O; B, u = O . l ;  C, 0=0.2; D, u = 0 . 3 ;  E, ~ = 0 . 4 ;  F, u=O.5; G, 
U = 0.6; H,  U = 0.7; I ,  U = 0.8; J, U = 0.9). Broken, full and dotted curves represent [ 1, 41, 
[3 ,2]  and [4, 13 Pad6 approximants, respectively. For U = 0 the low-density expansion, up 
to O(c2) included, has been presented. The arrow indicates the percolation threshold. 
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approximant 4D(c, 0) = 1 + a,c+ a2c2 .  The first observation, when comparing these 
results with corresponding predictions in the bond disorder problem ( Ernst et a1 1987), 
is that there is a much stronger density dependence in the present site disorder case. 
The error bars, estimated by comparing the various Pad6 approximants, are quite large 
for U S  0.2. We also note that the O(c2)  coefficient for the diffusion coefficient, a2 (b ) ,  
is vanishing for b = 1 - (T = 0.850, and next reaches a relative maximum a2 = 0.2059 at 
b = 0.654 and  again vanishes for b = 0 (pure case). Similarly, the O ( c 2 )  coefficient for 
the conductivity, P 2 ( b ) ,  shows a relative maximum P2 = 1.427 at 6 = 0.917 and vanishes 
at b = 0 too. For b + - W ( U  + +a) the quantities determining the conductivity approach 
a finite limit, e.g. P I  =2/1 (0 )  = 2 . r r / ( n - 2 )  and so d o  K33(0) ,  Q3(0)  and P 2 ,  as can be 
seen from equations (3.10)-(3.12). Since, for b <0, Z(c) =($)D(c)  = (1 +lb lc )D(c ) ,  
the density expansion of D ( c )  is only meaningful for c<< 1bI-l. For U >> 1 one does 
not recover the standard termite problems (Hong et a1 1986). Here, when moving on 
a connected cluster of ‘superconducting’ sites (with U >> l ) ,  the RW makes on the average 
a jump every I / (T  time units (fast timescale). After an average number of the order 
of a jumps, i.e. on average once per unit of time, the R W  leaves the superconducting 
cluster and  jumps to a perimeter site (intermediate timescale). However, the ratio of 
the probability for jumping back to a superconducting neighbour site over the probabil- 
ity for wandering off into normal conducting region is of the order of (T. Thus only 
on a timescale of about U time units (long timescale) can one measure a non-vanishing 
mean square displacement in the ‘normal conducting’ region. The standard termite 
problems have two timescales. 

At low impurity concentrations, i.e. to linear order in the impurity concentration, 
where only isolated ‘superconducting’ sites occur, the long timescale is absent. 
However, the long timescale enters in our considerations, because we consider not 
only O(c )  terms but also O ( c 2 )  terms. They come from impurity pairs and contain 
dimer configurations of two N N  impurities as the most important terms. 

Furthermore, the site problem under consideration has no simple interpretation in 
terms of an electric network, since the rate constant across a bond bordered by an  
impurity site and an impurity free site is U = 1 - b in one direction and unity in the 
opposite direction. I f  the bond is bordered by two impurity free (or impurity) sites, 
the rate constant is 1 (or a )  in both directions. 

Computer simulations and theoretical results only seem to exist for the percolation 
case, where a = 0 or b = 1.  Our results for the conductivity 

X ( C )  =:(1- T C +  1.2858~’+. . .) (4.2) 

are in close agreement (Nieuwenhuizen et al 1986) with the computer simulations of 
Harris and  Kirkpatrick (19771, and with the intuitive approximation of Watson and 
Leath (1974) X( c)  = a( 1 - T C  + 7rc2/2) and we refer to the appropriate figure of Nieuwen- 
huizen et a1 (1986) for a detailed comparison of all the above results. The Watson-Leath 
contribution is contained in our theory in the term Q3(0)  defined in (1.3), which 
describes certain contributions from two impurities on nearest-neighbour sites. The 
Watson-Leath approximation is obtained by neglecting g ( p ,  , 0) in the denominator 
of Q3(0) and yields QY“ (0 )  = t 3 ( 0 ) a , ( p , )  = x / 8 .  Erasing the term g ( p , ,  0) in (1.3) 
implies neglecting all repeated crossings of the R W  between two nearest-neighbour sites. 

There exist more computer simulations on the present model, but they do  not allow 
a meaningful comparison since they are performed at the percolation threshold c = c, 
in Z D  (Majid et a1 1984) or 3 D  (Seifert and Suessenbach 1984) and refer to critical 
exponents. Computer simulations of high precision have been carried out by Frenkel 
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(1987) for the diffusion coefficient at impurity concentrations of 1, 2.5, 5, 10 and 15% 
where our theoretical results predict 

D ( ~ ) = $ [ l - ( ~ - l ) ~ - 0 . 8 5 5 8 ~ ’ +  . . . I  (4.3 

and where Frenkel finds a2 = -0.78 +0.04. In figure 2 we have compared our exact 
density expansion (4.2) with an approximate result of Keyes and Lyklema (1982), and 
with the short-time or Enskog value of the diffusion coefficient DE = @(a, c)  = (1 - c)/4.  
The last result simply represents the diffusion coefficient on an average (uniform) 
lattice with a fraction (1 - e )  of available sites. The result of Keyes and Lyklema is 
based on a self-consistent ring-kinetic equation that only takes into account a single 
return of the R W  to an impurity site, and not all possible ‘repeated ring collisions’. At 
low densities this corresponds to a linearisation of (2.4) in I ( O ) ,  and leads to the 
incorrect low-density form (curve B):  

DR( c )  $[ 1 - c(3-4/ 77) + . . .] (4.4) 

Our result for D( c), exact to O( e’), vanishes at c - 0.402, very close to the percolation 
threshold cp = 1 - p c  = 0.4072 f 0.0006 (Saleur and Derrida 1985) for site percolation 
on a square lattice. The O( e )  approximation in (4.2) would vanish at c 2- 0.467, and 
the result of Keyes and Lyklema vanishes approximately at c-0.6. It should be 
mentioned further that the effective medium approximation gives poor results for the 
site percolation model (Harris and Kirkpatrick 1977), but does very well for the bond 
percolation model (Kirkpatrick 1973, Ernst et al 1987). This may be caused by the 
strong density dependence of the conductivity and diffusion coefficient in site- 
disordered models, yielding large values of CY’ and p z .  

0 

9 m 

1 0  

0.8 

0.6 

0 4  

0.2 

0 0 1  0 2  0 3  0 4  0 5  

Figure2. Comparison of different results for the diffusion coefficient D(c)  as a function 
of impurity concentration for the percolation model ( U  = 0 or b = 1). Curve A: the Enskog 
or short time diffusion coefficient D, = ( 1  - c)/4; curve B: ring approximation DR(c) in 
(4.4) of Keyes and Lyklema; curve C: D(c) from our density expansion up to O ( c 2 ) .  Note 
thpt D( c ) ,  as given by curve C, vanishes close to the threshold value cp = 0.4072 * 0.0006 
for site percolation on a 2D square lattice. 
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g,,(n, z )  = { 

I n  conclusion, we have critically examined the available information on the 2~ site 
percolation and compared it with our exact results. We further conclude that kinetic 
theory methods provide practical means for calculating transport coefficients in dis- 
ordered systems at low impurity concentrations, where no other methods of practical 
use seem to be available. Our numerical method for evaluating lattice sums converges 
rapidly. Summing the contributions from the 24 sites closest to the origin ( l n , l +  In, I s 4) 
enables us to obtain the transport coefficient with a relative accuracy of 1 : In 
fact, N N N  sites with ln,l+ In, 1 2 determine the lattice sum with a 5% accuracy, as 
illustrated in table 1. 

j g c ( n ) & ,  i , j E  {I ,  2 )  

i , j  E {3,4} 

i E { I ,  21 , j  E {3,4} 

- 5 gc(n)e ,e ,  

1 g s ( n ) c , e ,  

j gs(n)e ,e ,  i E {3,4}, j E { 1,2}. 
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Appendix I 

( A l . l )  
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We start by calculating averages over products of basis vectors, which can be 
expressed in terms of a few independent integrals: 

fo(z) = J” g f I ( Z )  = J” ge: f9(z) = J” geie:. . . . (A1.2) 

The first two are in fact sufficient to calculate all matrix elements of n at the origin 
and at its N N  sites; with the additional integral f9(z) all N N N  matrix elements can be 
calculated, etc. The required integrals are 

f d z )  = J” gel = 1 - zfo(z) 

f3(z) = J” get = 1 - z s ~ ( z )  

(A1.3) 

In the applications of this paper only g( n, 0) = g(n) is needed. In  the limit z + 0 all 
J ( 0 )  are finite exceptfo(z) which is of O(ln z). For the independent integrals in (A1.2) 
we quote the values 

f I (o )=[e : ]=2-4 /n  f ; ( O )  = [ eie:] = 2 - 16/(3 T ) .  (A1.4) 

The first integral was calculated in (2.2) and (2.3); the second can be obtained in a 
similar manner. In (A1.4) we introduced an average [ ] over the iBz; we further need 
a second one ( ). Their definitions are 

[ U I  = j- ( e , ( q ) ) - ’ u ( q )  ( U ) ’ j -  u ( q )  

and obey the relation [ ue,] = (U). With the help of these relations, together with (1.46) 
and (Al.11, we derive a recursion relation of the same structure as derived by Morita 
and Horiguchi (1971): 

(e-’“Zee) = A n , ,  n,) - M n ,  + 1, n, ) + g ( n ,  - 1, n,) +g(n., n, + 1) + g ( n , ,  n, - I ) ] .  
(A1.5) 
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The matrix on the LHS of (A1.5) is only non-vanishing for n = (0, 0}, {1,0}, { 1 , l )  and 
{2,0} (recall the previous restriction n, > n., 2 0), and can be trivially calculated. 

A relation between the elements of g( n )  can be deduced from the second identity 
below (A1.4). The result is 

2g,,(n) = 2 6 , 0 + t S , , , + g , , ( n ) + g , , ( n )  (A1.6) 

where p1 = { 1,O) is a "-lattice vector. 
Next we calculate the first column of g( n, z )  at z = 0: 

(A1.7) 

where a ( p l )  is a 4-vector with components 

a b l )  =%-I,  1 ,2 ,0 ) .  (A1 3) 

The 4-vectors a ( p , )  with i = 2 , 3 , 4  can be deduced from square symmetry, as discussed 
in appendix 2 of I .  An important consequence of (Al . l )  for n # p and n f 0 (see § 3.2) 
is that only elements of g ( n )  in the (234) subspace are needed. Therefore only those 
elements will be calculated. 

A1.2. Static values g(n) 

We denote the static values at z = 0 as g i n ;  0) = g( n ) .  For the site n = (0, 0} the matrix 
is diagonal in the (1234) subspace and we derive from (A1.2)-(A1.4) 

( j =  1) 
( j  = 2) (Al.9) 
( j  = 3,4).  -[e:] = - 2 + 4 / 7 ~  

These values also suffice to calculate the t matrix elements, introduced in (1.5a, b ) :  

t , ( O )  = b 

tz(0) = ( I /  b + 1 - 4/ T ) - '  

t 3 (0 )  = t , (O) = (2 /b  -2+47~) - ' .  

For the N N  site n = p i  = { l ,  0) we find similarly from (A1.2)-(A1.4) 

(A1 . lo) 

( A l . l l )  

t o  0 

In table 3 we have listed the elements g , (n)=g, , (n)  in the (234) subspace for sites 
N = { n x ,  n,} with lnxl + In, I S 4. So far we have analytic expressions for g({n,, n , } )  in 
the (234) subspaces for the 40 sites nearest to the origin. Since the lattice sums converge 
very rapidly (see § 3.3), these terms yield a fairly good estimate. If more accurate 
results are needed (see I ) ,  then one needs to calculate g({nx, n,}) for more distant 
sites, and the analytic methods become too cumbersome. Therefore we have calculated 
the relevant matrix elements numerically. To illustrate the method we consider gJ3( n )  
for n Z 0 and n # p, and obtain from (Al.1): 

g,,({n, m } ) = - ( 2 ~ ) - *  I n  dx,  I n  dx , s ,  cos(nx,) cos(mx,)/(l-c,/2-c1/2) (A1.12) 
--n -* 
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Table 3. Matrix elements g( {  n,, n ,  }) 

1 2 3 4 

-8+76/3n  
- 521371 

- 4 +  I88/15n 

+2 -201371 
-$+ 41371 
-4+ 1 8 8 / 1 5 ~  

0 
-$+8/5r 
-1  + 161571 

0 
5-321371 
-4 + 641571 

-42+ 132171 -224+ 1 0 5 5 6 / 1 5 ~  
3 2 - 1 5 0 8 / 1 5 ~  

8 - 76/3n 3 4 - 1 6 0 4 1 1 5 ~  
-2 +92/ 1571 

0 0 
- I O +  4721 1571 

0 0 
16 - 7521 15 71 

where sI = sin x1 , c, = cos x1 and  c2 = cos x2.  After the substitution w = exp(ix,)  the 
contour integral over the unit circle in the complex w plane can be performed and 
yields for n # 0 and n # p :  

with 

[ ] = 2 - c, - [( 1 - c l ) (3  - c,)]'/ ' 

Similar expressions can be derived for all relevant matrix elements in the (234) subspace. 
However, it follows from the recursion relation (A1.5) that, once g ( { n x ,  n , } )  is known 
for n, s M and n ,  = 0, then g ( n )  can be calculated for all sites with Inx] + In, I i M. 
For sites n = {nxr 0) with n, 2 2 the matrix g( n )  has the general form (see (A1.6)): 

( a + b ) / 2  c 0 

O b  
(Al .  14) 

In the expression ( A l . l )  for these matrix elements one can carry out one integration 
analytically, as in (A1.12). One finds the following results, which have been used for 
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performing the numerical integrations: 

g33({n, 0)) = (2/.rr) 1; dx,[ ]“ [ ( I  - cl)(3 - cl)11’2 

1: 
1: 

g44({n, 01) = - ( 2 / v )  dx,[ I“s:[(l- cl)(3 -cl)1-I’2 (Al.15) 

g,,({n, 01) = - ( U T )  dx,[ ] “ ( I -  C I ) .  

The expression [ 3, defined in (A1.13), is always positive and smaller than unity. 
Hence the formulae (A1.15) are suitable for numerical integration. We also point out 
that the alternative expression, obtained from (A1.12) by setting n, = 0, namely 

g33({0, m ) )  = g44({m; 01) = (2/.rr) dx ,  cos(mx,)[(l-  cl)(3 -cl)]”’ 1: 
is not suitable for numerical integration, because its integrand rapidly oscillates with 
increasing m. 

A1.3. Behaviour at large distances 

The asymptotic large-n behaviour of the matrix g ( { n , ,  n,}] in the (234) subspace can 
be obtained most conveniently from expressions of the form (A1.12) by changing to 
a new ‘integration variable x’, defined through cosh x = 2 -cos x, . The factor [ 3“. 
transforms into exp(-n,x). The dominant behaviour for n, 2 n, 2 0 and n, >> 1 is 
obtained by expanding the remaining part of the integrand around x = 0, and is for a 
site {n, m}:  

g z 2 ( { n ,  m ) )  = g2,({m, n})= (3 / .rr) (n4-6nzm2+ n 4 ) / ( n z +  m 2 ) j  

gz3({n, m ) )  = g2,({m, n))= - ( 2 / . r r ) n ( n z - 3 m 2 ) / ( n z + m 2 ) ~  

g34({n, m ) )  = g4,({m, n})= (4/.rr)nm/(n2+ m212. 

g , , ( { n ,  m ) )  = g4,({m, n I ) =  ( 2 / v ) ( n ’ - m ’ ) / ( n 2 +  m 2 ) 2  ( A l .  16) 

These matrix elements decrease respectively as d - 4 ,  d - 3 ,  d - ’ ,  d - ’  for large d, where 
d’ = n 2  + m 2 .  

Appendix 2 

We evaluate lattice sums E n  ( g ( n ;  z ) A g ( n ;  z ) ) , , ,  where g and A are 4 x  4 matrices with 
labels i, j E { 1,2,3,4} and where A is a diagonal matrix with elements A,, = A,&,. We 
obtain from (1.4), using the definition g ( q )  = ( z +  w(q))-l 

c M n ,  z ) A g ( n ,  z ) ) ,3  
n 

4 

(A2.1) 
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where 

( j  = 2,3,4). 

(A2.2) 

In (A2.1) we also used the relation E,, exp(iqn)= NSqo.  The coefficients can be 
expressed in the integrals J(z)  of (A1.2) and (A1.3) in appendix 1 via a partial 
integration using dg(q)/dqx = -;e3( q ) g 2 (  q ) .  The result is 

e i ( z )  = ( 1  + z(d/dz)}(f,(z)-fi(z))  

(A2.3) 

(A2.4) 

In the body of the paper we apply (A2.1) for the calculation of I; r2(n)  = E  g(n)rg(n)r, 
where r is diagonal. In the lattice sums to be considered the term r ( 0 )  = g(O)t, involving 
site n = 0, is missing and has to be subtracted from the final sums. Since the matrix 
g(O), calculated in (A1.9), is diagonal we only need its (33) element, given by g33(0) = 
4/7r -2. In this way we obtain 

= t:( 1 8 - 4 8 / ~  - 161~’)  + t:r2(24/v -?) + t: t ,(4/~ -+). 
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